Chem. Ber. 103, 1234-1249 (1970)

Helmut Quast und Edeltraud Schmitt

Die reversible Valenzisomerisierung von Diaziridiniminen

Aus dem Institut für Organische Chemie der Universität Würzburg

(Eingegangen am 17. November 1969)

Die Synthese bisher unbekannter Diaziridinimine ermöglichte erstmals die Beobachtung einer reversiblen Valenzisomerisierung eines Heteroanalogon des Methylencyclopropans. Die strukturisomeren Diaziridinimine 20a und 20b lagern sich bei höherer Temperatur ineinander um. Die Geschwindigkeit der Gleichgewichtseinstellung wurde von beiden Isomeren ausgehend NMR-spektroskopisch verfolgt. Die Kinetik gehorcht streng dem Geschwindigkeitsgesetz für zwei entgegengesetzt verlaufende Reaktionen erster Ordnung. Aus den Gleichgewichts- und Geschwindigkeitskonstanten bei 60 bis 90° wurden thermodynamische Daten und Aktivierungsparameter für die Valenzisomerisierung 20b \rightleftharpoons 20a berechnet. Als Zwischenstufe der Isomerisierung wird ein Triazaanalogon des Trimethylenmethans angenommen.

The Reversible Valence Isomerization of Diaziridine Imines

The synthesis of hitherto unknown diaziridine imines allowed the first observation of the reversible valence isomerization of a hetero methylene cyclopropane. The diaziridine imines 20a and 20b rearrange at elevated temperatures to give an equilibrium mixture. The rate of equilibration has been determined by n. m. r. spectroscopy starting from either isomer. The kinetics strictly obey the rate law obtained for two opposing first order reactions. From the equilibrium and rate constants of the isomerization $20b \approx 20a$ at 60 to 90° C the following data have been obtained: $\Delta H = -2.3 \pm 0.3$ kcal mol⁻¹, $\Delta S = -1.1 \pm 0.4$ cal degree⁻¹ mol⁻¹, and the parameters of the Eyring equation (at 75° C): $\Delta H_a^{\pm} = 29.4 \pm 0.4$ kcal mol⁻¹, $\Delta S_a^{\pm} = 2.6 \pm 1.2$ cal degree⁻¹ mol⁻¹, and $\Delta H_b^{\pm} = 27.1 \pm 0.2$ kcal mol⁻¹, $\Delta S_b^{\pm} = 0.1 \pm 0.5$ cal degree⁻¹ mol⁻¹. A triaza analogue of the trimethylene methane is assumed to be an intermediate in the valence isomerization.

Das theoretisch interessante Trimethylenmethan 1 stimulierte zahlreiche experimentelle Arbeiten, die sich mit seiner Rolle bei der Photolyse und/oder Thermolyse von 4-Methylen- Δ^1 -pyrazolinen^{1,2)}, des 3-Methylen-cyclobutanons³⁾, des 6-Methylen-1.4-dioxepan-dions-(2.3)⁴⁾ und des Trimethylenmethan-eisen-tricarbonyls⁵⁾ sowie bei

 ¹⁾ ^{1a1} P. Dowd, J. Amer. chem. Soc. 88, 2587 (1966); ^{1b)} R. J. Crawford und D. M. Cameron, ebenda 88, 2589 (1966); A. C. Day und M. C. Whiting, Proc. chem. Soc. [London] 1964, 368, J. chem. Soc. [London] C, 1966, 464; S. D. Andrews und A. C. Day, Chem. Commun. 1966, 667, 1967, 902, J. chem. Soc. [London] B, 1968, 1271.

²⁾ T. Sanjiki, H. Kato und M. Ohta, Chem. Commun. 1968, 496; T. Sanjiki, M. Ohta und H. Kato, ebenda 1969, 638.

³⁾ P. Dowd und K. Sachdev, J. Amer. chem. Soc. 89, 715 (1967); P. Dowd, A. Gold und K. Sachdev, ebenda 90, 2715 (1968).

⁴⁾ J.-P. Schirmann und F. Weiss, Tetrahedron Letters [London] **1967**, 5163; F. Weiss, Angew. Chem. **81**, 191 (1969); Angew. Chem. internat. Edit. **8**, 218 (1969).

⁵⁾ A. C. Day und J. T. Powell, Chem. Commun. 1968, 1241.

der Enthalogenierung von 1.3-Dihalogen-2-methylen-propanen⁶⁾ befassen. Dowd gelang der physikalische Nachweis und Strukturbeweis des Triplett-Trimethylenmethans durch EPR-Spektren bei tiefer Temperatur^{1a,3)}. Deutliche Hinweise auf die Existenz von Trimethylenmethan-Zwischenstufen lieferte aber bereits eine merkwürdige thermische Valenzisomerisierung des Methylencyclopropan-Gerüsts, die zuerst an den Estern der *Feist* schen Säure beobachtet wurde^{2,7-9)}. Chesick untersuchte die Kinetik dieser Umlagerung am Beispiel **2a** \neq **2b**⁸⁾.

Durch Verfolgung der Stereochemie der Isomerisierung $3a \rightleftharpoons 3b$ konnte *Gajewski* jedoch zeigen, daß die beiden Mulden a und b der Potentialfläche des Methylencyclopropan-Systems 3 nicht nur über ein planares Trimethylenmethan miteinander verbunden sind, vielmehr einem Weg über ein orthogonales Diradikal erhebliche Bedeutung zukommt⁹).

Diese Arbeiten über das Trimethylenmethan 1 und seine Derivate geben bereits einen Überblick über Methoden, die zur Erzeugung, zum Nachweis und zum Studium von Eigenschaften und chemischem Verhalten analoger Verbindungen, bisher wenig oder gar nicht bekannter Heterotrimethylenmethane, geeignet erscheinen. Eine weitere Möglichkeit bieten Abfangreaktionen dieser sehr reaktiven, kurzlebigen Moleküle, wie sie an den durch disrotatorische Ringöffnung von Cyclopropanonen entstehenden Zwischenstufen demonstriert wurden¹⁰⁾. Endziel solcher Untersuchungen muß neben der Kenntnis der Reaktionsweise die Beschreibung der Potentialfläche dieser relativ einfach gebauten Systeme sein, da damit theoretische Berechnungen und Voraussagen z. B. der EHT-¹¹⁾ oder CNDO/2-Methode^{11 b)} experimentell geprüft werden können. Wir berichten hier über das erste Beispiel einer reversiblen, thermischen

- 9) J. J. Gajewski, J. Amer. chem. Soc. 90, 7178 (1968).
- ¹⁰⁾ N. J. Turro, S. S. Edelson, J. R. Williams, T. R. Darling und W. B. Hammond, J. Amer. chem. Soc. 91, 2283 (1969); N. J. Turro, Accounts chem. Res. 2, 25 (1969); J. Levisalles, E. Rose und I. Tkatchenko, Chem. Commun. 1969, 445.
- 11) 11a) R. Hoffmann, J. Amer. chem. Soc. 90, 1475 (1968); ^{11b)} T. Koenig und T. Barklow, Tetrahedron [London] 25, 4875 (1969).

⁶⁾ R. G. Doerr und P. S. Skell, J. Amer. chem. Soc. 89, 3062 (1967); P. S. Skell und R. G. Doerr, ebenda 89, 4688 (1967).

R. Breslow in P. de Mayo, Molecular Rearrangements, Teil 1, S. 233, Interscience Publishers, New York und London 1963; H. M. Frey in V. Gold, Advances in Physical Organic Chemistry, Bd. 4, S. 148, Academic Press, London und New York 1966; J. K. Crandall und D. R. Paulson, J. Amer. chem. Soc. 88, 4302 (1966), J. org. Chemistry 33, 991 (1968); J. K. Crandall, D. R. Paulson und C. A. Bunnell, Tetrahedron Letters [London] 1969, 4217; W. R. Dolbier jr., ebenda 1968, 393; R. Noyori, H. Takaya, Y. Nakanisi und H. Nozaki, Canad. J. Chem. 47, 1242 (1969).

⁸⁾ J. P. Chesick, J. Amer. chem. Soc. 85, 2720 (1963).

Valenzisomerisierung eines Heteromethylencyclopropans¹²⁾. Die Kinetik und die Aktivierungsparameter dieser Isomerisierung machen eine ringoffene Zwischenstufe wahrscheinlich.

Das Studium der Valenzisomerisierung von Heteromethylencyclopropanen wird durch den Umstand erschwert, daß sie in einer symmetrieerlaubten, cheletropen Reaktion¹³⁾ zerfallen können (Schema 1, z. B. $a \rightarrow a'$), was bei Methylencyclopropanen bisher noch nicht beobachtet wurde.

	Х	Y	Z
4	0	CR ₂	N-R
5	0	CH- 3.5.7-trimethyl- adamantyl-(1)	N-tBu
6	CH ₂	CII-C ₆ H ₅	$\mathrm{N-C_{6}H_{5}}$
7	CH ₂	CH-tBu	N-tBu
8	CII ₂	CH ₂	$\mathrm{N} ext{-}\mathrm{C}_{2}\mathrm{H}_{5}$
9	CH-tBu	CH-tBu	0
10	N-tBu	N-tBu	0
11	NH	NH	¹⁵ NH

 ¹²⁾ Vorläufige Mitteilung; H. Quast und E. Schmitt, Angew. Chem. 81, 429 (1969); Angew. Chem. internat. Edit. 8, 449 (1969).

¹³⁾ Der Zerfall muß aus geometrischen Gründen disrotatorisch und damit auf dem nichtlinearen cheletropen Weg verlaufen: R. B. Woodward und R. Hoffmann, Angew. Chem. 81, 797 (1969); Angew. Chem. internat. Edit. 8, 781 (1969). Wir danken Professor R. Hoffmann für die Mitteilung dieser Ergebnisse vor ihrer Veröffentlichung.

Darin dürfte zum Teil die Ursache dafür zu suchen sein, daß zu Beginn der vorliegenden Untersuchung nur zwei irreversible Valenzisomerisierungen $\mathbf{a} \rightarrow \mathbf{b}$ eines Heteromethylencyclopropans beschrieben waren, wobei allerdings nur in einem Fall wenigstens ein Isomeres in Substanz bekannt war^{14, 15)}

So erhielten Sheehan und Lengyel bei der Thermolyse von α -Lactamen **4a** Carbonylverbindungen und Isocyanide **4b**', die als Produkte der Reaktionsfolge **4a** \rightarrow (**4b**) \rightarrow **4b**' interpretiert wurden¹⁴), im Einklang mit dem Verlauf der Epoxidierung von Keteniminen, wobei über die Zwischenstufen **4b** ebenfalls Carbonylverbindungen und Isocyanide entstehen¹⁶). Bott konnte an **5a** zeigen, daß der geschwindigkeitsbestimmende Schritt dieses α -Lactamzerfalls tatsächlich die Isomerisierung **5a** \rightarrow **5b** ist, da unabhängig erhaltenes **5b** bereits bei sehr viel tieferer Temperatur sehr rasch in Aldehyd und Isocyanid **5b**' zerfällt¹⁷).

Die Isomerisierung der Methylenaziridine $6a^{15}$ und $7a^{18}$ in die Cyclopropanimine 6b, 7b erscheint als Teilschritt mehrstufiger Reaktionen gesichert, obschon es selbst bei 190° nicht gelang, eine entsprechende Valenzisomerisierung des einfacheren Methylenaziridins 8a nachzuweisen¹⁵).

Erst kürzlich gelang die Isolierung des ersten Allenepoxids (9a) und seine irreversible Umlagerung in das thermisch recht stabile 2.3-Di-tert.-butyl-cyclopropanon (9b)¹⁹⁾. Diese Valenzisomerisierung läuft wahrscheinlich über die gleiche Zwischenstufe, die durch disrotatorische Ringöffnung von Cyclopropanonen entsteht und auch für eine Reihe anderer Reaktionen angenommen wurde¹⁰⁾.

Greene und Pazos erhielten aus tert.-Butylisocyanid und 2-Methyl-2-nitroso-propan das Diaziridinon 10b in einer Reaktionsfolge $10a' \rightarrow (10a) \rightarrow 10b$, die offenbar eine Valenzisomerisierung gemäß Schema 1 einschließt ²⁰).

Ohme und Preuschhof zeigten vor kurzem, daß Semicarbazid aus ¹⁵N-Hydroxy-guanidin-O-sulfonsäure zu 87.5% über das unsubstituierte Diaziridinimin **11a** und zu 12.5% nach Art eines Hofmannschen Säureamidabbaus gebildet wird. Außerdem beobachteten sie eine minimale, gerade noch außerhalb der Meßfehlergrenze liegende Zunahme des ¹⁵N-Gehalts in der 4-Stellung des Semicarbazids, was auf eine geringfügige Automerisierung ²¹) **11a** \rightarrow **11b** hinweist ²².

N.N'.N"-Tri-tert.-butyl-diaziridinimin

Keines der genannten Beispiele bringt offenbar die Voraussetzungen mit, die für eine direkte, spektroskopische Beobachtung einer reversiblen Valenzisomerisierung eines Heteromethylencyclopropan-Systems nötig sind. Wir vermuteten geeignete Systeme in der Reihe der von Dreiringen abgeleiteten Imine 12, die eine gewisse Mittelstellung zwischen den zum Teil bekannten Methylen- und Carbonylverbindungen

²⁰⁾ F. D. Greene und J. F. Pazos, J. org. Chemistry 24, 2269 (1969).

¹⁴⁾ I. Lengyel und J. C. Sheehan, Angew. Chem. 80, 27 (1968); Angew. Chem. internat. Edit.
7, 25 (1968); H. E. Baumgarten, R. D. Clark, L. S. Endres, L. D. Hagemeier und V. J. Elia, Tetrahedron Letters [London] 1967, 5033; I. Lengyel und D. B. Uliss, Chem. Commun. 1968, 1621; E. R. Talaty und A. E. Dupuy, jr., ebenda 1968, 790; E. Breuer, T. Berger und S. Sarel, ebenda 1968, 1596.

¹⁵⁾ J. A. Deyrup und R. B. Greenwald, Tetrahedron Letters [London] 1966, 5091.

¹⁶⁾ H. Kagen und I. Lillien, J. org. Chemistry 31, 3728 (1966).

¹⁷⁾ K. Bott, Tetrahedron Letters [London] 1968, 3323.

¹⁸⁾ J. C. Sheehan und M. M. Nafissi-V., J. Amer. chem. Soc. 91, 4596 (1969).

¹⁹⁾ R. L. Camp und F. D. Greene, J. Amer. chem. Soc. 90, 7349 (1968).

²¹⁾ A. T. Balaban und D. Farcasiu, J. Amer. chem. Soc. 89, 1958 (1967).

²²⁾ R. Ohme und H. Preuschhof, Liebigs Ann. Chem. 721, 25 (1969); s.a. A. Heesing, G. Imsieke, G. Maleck, R. Peppmöller und H. Schulze, Chem. Ber. 103, 539 (1970).

einnehmen und bei Verwendung sperriger Alkylgruppen als Substituenten²³⁾ hinreichend stabil sein sollten. Imine vom Typ **12** sind zwar neuerdings wiederholt als Zwischenstufen angenommen^{15, 18, 22, 24)}, bisher jedoch trotz mehrerer Versuche²⁵⁾ in keinem Fall isoliert worden.

Ausgehend von 2 Mol Tri-tert.-butyl-guanidin 13 erhielten wir mit einem Mol tert.-Butylhypochlorit glatt das Diaziridinimin 14 neben einem Mol 13 · HCl.

$$\begin{array}{c}
\stackrel{\circledast}{\longrightarrow} \times \\
\stackrel{HN}{\longrightarrow} \\
\stackrel{L}{\longrightarrow} \\
\stackrel{H}{\longrightarrow} \\
\stackrel{H}{$$

Noch bequemer gelingt die Darstellung, wenn man Tri-tert.-butyl-guanidiniumperchlorat (13 · HClO₄) mit tert.-Butylhypochlorit in Anwesenheit von überschüssigem Kalium-tert.-butylat behandelt²⁶). 14 fällt dabei als farbloses, destillierbares Öl an. Die glatte Thermolyse von 14 in tert.-Butylisocyanid (15) und *trans*-2.2'-Azoisobutan (16) bestätigte die aus analytischen und spektroskopischen Daten abgeleitete Kon-

$$14 \xrightarrow{150^{\circ}} + \overset{\oplus}{\mathbb{N}=C^{\circ}} + \overset{N=N}{\underset{15}{\mathbb{N}=N}} (G1.3)$$

stitution ²⁶⁾. Die hohe Ausbeute an *trans*-2.2'-Azoisobutan (**16**) (80%)²⁷⁾ gibt einen Hinweis auf die relative Stellung der beiden tert.-Butylgruppen am Dreiring. Da der thermische Zerfall von **14** nur disrotatorisch verlaufen kann¹³⁾, müssen die beiden Ring-tert.-Butylgruppen wie im 2.3-Di-tert.-butyl-cyclopropanon (**9b**)^{23a)}, im 1.2-Ditert.-butyl-diaziridinon (**10b**)^{23 b)} und bei allen untersuchten *N.N'*-Dialkyl-diaziridinen²⁸⁾ in der sterisch sehr viel günstigeren *trans*-Stellung zueinander stehen.

²³⁾ Der stabilisierende Effekt sperriger Alkylgruppen bei Heteromethylencyclopropanen ist bekannt: ^{23 a)} J. F. Pazos und F. D. Greene, J. Amer. chem. Soc. 89, 1030 (1967); ^{23 b)} F. D. Greene und J. C. Stowell, ebenda 86, 3569 (1964); F. D. Greene, J. C. Stowell und W. R. Bergmark, J. org. Chemistry 34, 2254 (1969); ^{23 c)} J. K. Crandall und W. H. Machleder, J. Amer. chem. Soc. 90, 7346 (1968) und 1. c. ^{14, 19)}.

²⁴⁾ D. Seyferth und R. Damrauer, Tetrahedron Letters [London] 1966, 189.

 ²⁵⁾ R. F. Bleiholder und H. Shechter, J. Amer. chem. Soc. 90, 2131 (1968); J. A. Deyrup, M. M. Vestling, W. V. Hagan und H. Y. Yun, Tetrahedron [London] 25, 1467 (1969); T. R. Oakes, H. G. David und F. J. Nagel, J. Amer. chem. Soc. 91, 4761 (1969).

²⁶⁾ H. Quast und E. Schmitt, Angew. Chem. 81, 428 (1969); Angew. Chem. internat. Edit. 8, 448 (1969). Über die Anwendungsbreite der Synthese und über Umsetzungen der sehr reaktiven Diaziridinimine soll an anderer Stelle berichtet werden.

²⁷⁾ Das thermisch sehr labile cis-2.2'-Azoisobutan kann nicht oder nur in untergeordnetem Maße primäres Thermolyseprodukt sein, da es bereits bei 0° mit einer Halbwertszeit von 29 Min. in Stickstoff und tert.-Butylradikale zerfällt: T. Mill und R. S. Stringham, Tetrahedron Letters [London] 1969, 1853.

²⁸⁾ A. Mannschreck und W. Seitz, Angew. Chem. 81, 224 (1969); Angew. Chem. internat. Edit. 8, 212 (1969); A. Mannschreck, R. Radeglia, E. Gründemann und R. Ohme, Chem. Ber. 100, 1778 (1967).

Von besonderem Interesse im Zusammenhang mit einer möglichen Valenzisomerisierung ist das NMR-Spektrum von 14 und seine Temperaturabhängigkeit. Eine in bezug auf die NMR-Zeitskala rasche Umlagerung gemäß Schema 1, die im vorliegenden Falle zu einer Automerisierung²¹⁾ entartet sein sollte, müßte zu einem NMR-Spektrum mit Signalverbreiterung, Koaleszenzphänomen und schließlich magnetischer Äquivalenz aller tert.-Butylsignale von 14 bei Temperaturerhöhung führen.

In verschiedenen Lösungsmitteln (Tetrachlorkohlenstoff, Dioxan, Chinolin, Benzonitril, α -Brom-naphthalin, nicht jedoch in Benzol²⁹⁾) und auch ohne Lösungsmittel (s. Tab. 1) beobachtet man bei $+33^{\circ}$ drei intensitätsgleiche Singuletts, von denen

	Singuletts der N-Alkylgruppen			• • •	T bi	
verb.	R	δ (ppm)	δ (ppm)	$(\pm 0.1 \text{ Hz})$	$(\pm 1^{\circ} C)$	$\Delta G_{c} + c$ (kcal/Mol)
14	tBu	1.25	tBu 1.09, 1.16	4.7 (10°) 7.9 (10°)	51° 52°d)	17.5 17.2
20 a	$CH_3 \\ J_{13}C$	3.03 н ^{135 Нz}	tBu 1.10, 1.13	2.1 (38°)	109°	21.4
20b	tBu	1.24	tBu 1.10, CH ₃ 2.75 J _{13C-H} 137.5 Hz			
Pentamethyl- guanidin	CH3	2.93	CH ₃ 2.67, 2.77 e)	6 (33°)	78°	18.8

Tab. 1. NMR-Daten der Diaziridinimine 14, 20a und 20b. Die Spektren wurden ohne Lösungsmittel bei 60 MHz aufgenommen und gegen TMS intern standardisiert. Zum Vergleich die Daten von Pentamethylguanidin 30a)

a) Abstand der beiden Singuletts bei höherem Feld bei der angegebenen Temperatur.

b) Koaleszenztemperatur der beiden Singuletts bei höherem Feld.

^{c)} Freie Aktivierungsenthalpie bei der Koaleszenztemperatur, berechnet mit $\frac{1}{k_c} = \frac{\sqrt{2}}{\pi \cdot \Delta v}$ und der *Eyring*-Gleichung. ^{d)} Bei 100 MHz.

e) Singuletts der beiden Dimethylaminogruppen in DCCl3.

jedoch nur die beiden bei höherem Feld deutlich verbreitert sind. Aufgrund der chemischen Verschiebung ist das bei tiefstem Feld erscheinende, scharfe Signal der tert.-Butylgruppe am Iminostickstoff zuzuordnen. Die beiden anderen Singuletts müssen den Ring-tert.-Butylgruppen zukommen, wobei die unterschiedliche chemische Verschiebung durch den Anisotropieeffekt der Iminogruppe³³ hervorgerufen wird. Bei Temperaturerhöhung zeigen die beiden bei höherem Feld erschei-

²⁹⁾ In Benzol zeigt 14 zwischen -4 und $+50^{\circ}$ nur zwei scharfe Singuletts (1.33, 1.17 ppm) im Verhältnis 1:2.

^{30) 30}a) V. H. Bauer, W. Fulmor, G. O. Morton und S. R. Safir, J. Amer. chem. Soc. 90, 6846 (1968); ^{30 b)} F. Vögtle, A. Mannschreck und H. A. Staab, Liebigs Ann. Chem. 708, 51 (1967); N. P. Marullo und E. H. Wagener, Tetrahedron Letters [London] 1969, 2555; ³⁰c) H. Kessler und D. Leibfritz, Tetrahedron [London] 25, 5127 (1969), ebenda im Druck und frühere Arbeiten.

³¹⁾ Die tert.-Butylsinguletts von $R_2C=N-tBu$ erscheinen bei 1.05 (Aldimine ^{31a,b]}) bis 1.38 ppm (Isocyaniddichlorid). N-Methylsignale von $R_2C=N-CH_3$ liegen bei 2.9 bis 3.6 ppm 30a, 31c). 31a) R. Bonnett, J. chem. Soc. [London] 1965, 2313; 31b) J. C. Sheehan und M. M. Naffissi-V., J. Amer. chem. Soc. 91, 1176 (1969); 31c) D. Y. Curtin, E. J. Grubbs und C. G. McCarty, J. Amer. chem. Soc. 88, 2775 (1966); G. J. Karabatsos und S. S. Lande, Tetrahedron [London] 24, 3907 (1968).

³²⁾ N-tert.-Butyl-diaziricin gibt ein tert.-Butylsignal bei 0.95 ppm²⁸⁾, die entsprechenden Singuletts von N-tert.-Butyl-aziridinonen^{14,31b)} und -diaziridinon (10b)^{23b)} erscheinen bei 1.2 bis 1.5 ppm. N-Methyl-diaziridine zeigen Singuletts bei 2.3 bis 2.6 ppm²⁸⁾.

³³⁾ G. J. Karabatsos und R. A. Taller, Tetrahedron [London] 24, 3923 (1968).

nenden Singuletts stärkere Verbreiterung und schließlich Koaleszenz. Bei 100° besteht das NMR-Spektrum nur noch aus zwei scharfen Singuletts (Halbwertsbreite 0.7 Hz) im Verhältnis 1:2. Diese Temperaturabhängigkeit und die magnetische Äquivalenz zweier tert.-Butylgruppen bei höherer Temperatur läßt sich nur durch rasche *synanti*-Isomerisierung der Iminogruppe erklären, ein Phänomen, das bereits bei einer Reihe vergleichbarer Alkylimino-kohlensäure-Derivate im gleichen Temperaturbereich beobachtet worden war³⁰. Damit ist die getroffene Zuordnung der NMR-Signale gesichert.

Eine rasche Automerisierung von 14 ließ sich jedoch nicht nachweisen. Die für diesen Fall zu erwartende Verbreiterung *aller* tert.-Butyl-Signale wurde bei weiterer Temperatursteigerung nicht beobachtet: bei 150° in Chinolin betrug die Halbwertsbreite beider Singuletts noch 0.7 Hz. Messungen bei höherer Temperatur ließ aber der bereits bei 150° störende Zerfall (Gl. 3) nicht zu. Somit war nur die Abschätzung eines unteren Grenzwertes ($\Delta G^+_{150^\circ}>24$ kcal/Mol) für die Energiebarriere der (freilich noch hypothetischen) Automerisierung von 14 möglich. Dieser wichtige Befund zeigte, daß unter normalen Temperaturbedingungen Strukturisomere von Diaziridiniminen, z. B. mit verschiedenen Alkylsubstituenten, in reiner Form isolierbar sein müssen³⁴.

Strukturisomere Diaziridinimine

Um eine langsame Valenzisomerisierung nachweisen zu können, wurden Diaziridinimine benötigt, bei denen ein bestimmtes Stickstoffatom markiert war. Da eine eindeutige Synthese eines solchen Diaziridinimins bisher noch nicht verwirklicht wurde, schied Isotopenmarkierung eines Stickstoffatoms von vornherein aus. Somit verblieb nur die Markierung eines Stickstoffatoms in 14 durch einen von tert.-Butyl verschiedenen Substituenten, der so gewählt werden mußte, daß einmal der Charakter des Diaziridinimins nicht zu sehr gegenüber 14 verändert wurde, andererseits eine präparative Trennung des bei der Synthese aus einem Guanidin zu erwartenden Isomerengemischs experimentell noch möglich erschien. Die Untersuchung von Methyl-di-tert.-butyl-diaziridiniminen (20) war folglich das Nächstliegende.

Ohne Berücksichtigung sterischer Effekte³⁵⁾ aufgrund der unterschiedlichen Raumerfüllung von Methyl- und tert.-Butylgruppe erwartet man beim Ringschluß des *N*-Methyl-*N'*.*N''*-di-tert.-butyl-guanidins (17) zu einem Diaziridinimin aus rein statistischen Gründen ein Gemisch der Isomeren 20a und 20b, c im Verhältnis 1:2 (Schema 2). In Anbetracht der beiden theoretisch möglichen Anordnungen der Ringsubstituenten in *cis*- und *trans*-Stellung sind insgesamt 6 Isomere denkbar.

Tatsächlich entstand aber aus zwei Mol 17 und einem Mol tert.-Butylhypochlorit in n-Pentan in 83 proz. Ausbeute eine Mischung von nur zwei Isomeren A und B in ungefähr gleicher Menge. Daraus ließ sich A durch Kristallisation bei -20° in reiner Form erhalten und B durch Fraktionierung über eine Drehbandkolonne bei Raumtemperatur auf 80–90% anreichern. Die Art der Darstellung, Elementaranalyse, das

³⁴⁾ Vgl. H. Eyring, J. chem. Physics 3, 107 (1935) und z. B. 1. c.²⁸⁾.

³⁵⁾ Vgl. die sterischen Effekte bei der Diaziridinbildung: *E. Schmitz*, "Dreiringe mit zwei Heteroatomen", Springer-Verlag, Berlin 1967.

Fehlen von N-H-Banden und die extrem hohe C=N-Frequenz in den IR-Spektren, die sich deutlich unterscheiden (s. Abbild. 1), sichern für beide Isomere die Diaziridinimin-Struktur. A und B bleiben bei Raumtemperatur längere Zeit, bei -20° über ein halbes Jahr unverändert. Das zeigt bereits, daß sie durch eine hohe Energiebarriere getrennt sein müssen³⁴).

Die Strukturzuordnung für die Isomeren A und B gelingt mit Hilfe ihrer NMR-Spektren und deren Temperaturabhängigkeit (Tab. 1, Abbild. 2). A zeigt wie 14 ein temperaturabhängiges NMR-Spektrum. Sein im Erwartungsbereich für *N*-Methylimine³¹ liegendes Methylsingulett bleibt im untersuchten Temperaturbereich (bis 140°) scharf. Die tert.-Butylsignale dagegen zeigen ab 90° Linienverbreiterung, bei 109° Koaleszenz. Bei 140° findet man für *beide* tert.-Butylgruppen nur *ein* Singulett (Halbwertsbreite 0.7 Hz)³⁶). Diese Temperaturabhängigkeit des NMR-Spektrums, die zu magnetischer Äquivalenz der tert.-Butylgruppen führt, während das Methylsignal unbeeinflußt bleibt, ist nur mit der Struktur **20a** zu vereinbaren. Wie im Falle der Tri-tert.-butylverbindung **14** kann die bei höherer Temperatur NMR-spektroskopisch gefundene größere Symmetrie des Moleküls nur durch rasche *syn-anti*-Isomerisierung der Iminogruppe³⁰ von **20a** zustande kommen³⁷¹. Damit ist die bereits aufgrund der chemischen Verschiebungen anzunehmende Struktur **20a**³⁸⁾ für A gesichert.

³⁶⁾ Oberhalb 100° tritt im Verlauf der Messung bereits Isomerisierung zu 20b ein. Die Konzentration an 20b bleibt jedoch so klein, daß keine Beeinträchtigung der Aussage erfolgt.

³⁷⁾ Die im Vergleich zu 20a größere Geschwindigkeit der syn-anti-Isomerisierung von 14 wird durch sterische Effekte verursacht^{30c)}.

³⁸⁾ NMR-Spektroskopisch läßt sich nicht zwischen der trans- und der (äußerst unwahrscheinlichen, s. S. 1238) cis-Anordnung der Ringsubstituenten unterscheiden. Die Interpretation der vorliegenden Ergebnisse bleibt aber davon ebenso wie von der Chiralität der Diaziridinimine unberührt.

Abbild. 1. Ohne Lösungsmittel in 0.025 mm Schichtdicke bzw. kapillarer Schicht aufgenommene 1R-Spektren von 20a (unteres Spektrum), 20b + 20a (82:18, oberes Spektrum) und der nach 40 Stdn. bei 70° erhaltenen Gleichgewichtsmischung aus 20a und 20b (Mitte). Die Wellenzahlen charakteristischer Banden sind angegeben. Ordinate: % Durchlässigkeit

Die chemischen Verschiebungen der Signale im NMR-Spektrum des Isomeren **B** sprechen für die Anwesenheit einer tert.-Butyliminogruppe und die Verknüpfung einer tert.-Butyl- und einer Methylgruppe mit dem Dreiring^{31,32}), also für eine der noch verbleibenden Möglichkeiten **20b** bzw. **20c**³⁸). Diese Zuordnung läßt sich durch einen Vergleich mit literaturbekannten Alkyliminen stützen, der außerdem eine Entscheidung zugunsten des sterisch günstigeren **20b** nahelegt. Die Tatsache, daß *nur eines* von zwei möglichen *syn-anti*-Isomeren beobachtet wird, findet man bei zahlreichen Alkyliminen: nur wenn die Reste am Kohlenstoffatom der Iminogruppe von gleicher oder ähnlicher Größe sind, läßt sich *syn-anti*-Isomerie und eine dadurch hervorgerufene Temperaturabhängigkeit des NMR-Spektrums beobachten. Bei stärkeren Unterschieden in der Raumerfüllung ist nur das sterisch günstigere

1243

Isomere NMR-spektroskopisch nachweisbar^{30,31c,39)}. In Übereinstimmung mit diesen Befunden zeigt das NMR-Spektrum des Isomeren **B** im untersuchten Temperaturbereich (bis $110^{\circ}40$) keine Linienverbreiterung. Aus diesen Gründen ordnen wir **B** die Konstitution **20b** zu.

Abbild. 2. Ohne Lösungsmittel aufgenommene NMR-Spektren von 20a (unteres Spektrum),
20b + 20a (82:18, oberes Spektrum) und der nach 260 Min. bei 90° erhaltenen Gleichgewichtsmischung aus 20a und 20b (Mitte) bei 33°. x unbekannte Verunreinigung evtl. 20c. Im
Spektrum der Gleichgewichtsmischung taucht erst bei 40fach erhöhter Verstärkung das charakteristische Triplett des tert.-Butylisocyanids bei 1.40 ppm⁴³⁾ auf

³⁹⁾ D. Wurmb-Gerlich, F. Vögtle, A. Mannschreck und H. A. Staab, Liebigs Ann. Chem. 708, 36 (1967); L. Cavalli und P. Piccardi, Chem. Commun. 1969, 1132.

⁴⁰⁾ Infolge der eintretenden Isomerisierung 20b → 20a (s. unten) wird bei 110° das tert.-Butylsingulett bei 1.10 ppm von den koaleszierenden tert.-Butylsignalen von 20a überlagert.

Daß die Verbindungen A und B Strukturisomere und keine *syn-anti*-Isomere oder Inversionsisomere mit verschiedener Stellung der Ringsubstituenten sind, wird noch unterstrichen durch den Unterschied in den ¹³C-H-Kopplungskonstanten der *N*-Methylgruppen von A und B (Tab. 1), die bekanntlich vom Bindungszustand des Stickstoffs abhängen⁴¹⁾.

Valenzisomerisierung der strukturisomeren Diaziridinimine 20

Während **20a** und **20b** bei tiefer Temperatur unverändert bleiben, lagern sie sich ab etwa 40 bis 50° mit meßbarer Geschwindigkeit ineinander um. Sowohl aus **20a** als auch aus **20b** erhält man so Gleichgewichtsmischungen, die bei gegebener Umlagerungstemperatur identische IR- und NMR-Spektren besitzen. Die Isomerisierung muß somit reversibel sein. In den Gleichgewichtsmischungen überwiegt **20a** deutlich, das folglich thermodynamisch stabiler ist. Thermischer Zerfall in Isocyanid und Azoverbindung findet nur in sehr untergeordnetem Maße statt, wie an der schwachen Bande des tert.-Butylisocyanids im IR-Spektrum bei 2130/cm⁴² (Abbild. 1) und seinem Triplett bei 1.40 ppm⁴³ im NMR-Spektrum der Gleichgewichtsmischung (Abbild. 2) zu erkennen ist. Mit dem Nachweis der reversiblen Umlagerung der strukturisomeren Diaziridinimine **20** dürfte gleichzeitig die Frage der Automerisierung²¹ des Tri-tert.-butyl-diaziridinimins **14** indirekt beantwortet sein.

Die Geschwindigkeit der Einstellung des Gleichgewichts (Gl. 4) ließ sich bequem NMR-spektroskopisch verfolgen. Dazu wurden entgaste getrennte Proben von **20a** und **20b** ohne Lösungsmittel gleichzeitig in einem Thermostaten erhitzt, in bestimmten Zeitabständen nach raschem Abkühlen das NMR-Spektrum bei ca. 33° aufgenommen und durch Integration über die Methylsignale der Molenbruch des entstehenden Isomeren ermittelt. Nach dem Geschwindigkeitsgesetz für zwei entgegengesetzt verlaufende Reaktionen nach erster Ordnung wurden ausgezeichnete Regressionsgeraden erhalten. Abbild. 3 veranschaulicht den Verlauf der Gleichgewichtseinstellung bei 70° und zeigt die Übereinstimmung zwischen den berechneten Kurven und den experimentellen Meßpunkten.

Die Geschwindigkeitskonstanten sind wegen der wesentlich größeren Konzentrationsänderungen genauer, wenn die Gleichgewichtseinstellung von dem instabileren Isomeren **20b** aus verfolgt wurde. Daher wurde nur in einem Fall (bei 70°) die Geschwindigkeit der Isomerisierung ausgehend von **20a** gemessen, bei allen anderen

⁴¹⁾ P. Haake, W. B. Miller und D. A. Tyssee, J. Amer. chem. Soc. 86, 3577 (1964).

 ⁴²⁾ I. Ugi und R. Meyr, Chem. Ber. 93, 239 (1960); J. Casanova, jr., N. D. Werner und R. E. Schuster, J. org. Chemistry 31, 3473 (1966). Die Herkunft der Bande bei 2095/cm ist unklar.

⁴³⁾ I. D. Kuntz, jr., P. von R. Schleyer und A. Allerhand, J. chem. Physics 35, 1533 (1961).

Temperaturen wurde **20a** nur zur Kontrolle der Gleichgewichtskonstanten verwendet. Die Übereinstimmung der bei 70° unabhängig erhaltenen Geschwindigkeitskonstanten ist sehr gut (Tab. 2).

Abbild. 3. Computer-Zeichnung der berechneten Molenbruch/Zeit-Kurven und der experimentell bestimmten Meßpunkte für die Gleichgewichtseinstellung ausgehend von 20a und 20b bei 70°. Abszisse: Zeit in Stdn., Ordinate: Molenbruch von 20a. Die Kurven wurden mit $k_a + k_b = 4.685 \cdot 10^{-5} \text{ sec}^{-1}$ und K = 8.35 auf einer Electrologica EL-x8 berechnet und von einem Calcomp-Plotter 563 gezeichnet

Tab. 2. Gleichgewichts- und Geschwindigkeitskonstanten der Isomerisierung 20b = 20a

Ausgangs verb.	- Temp. (± 0.1° C)	$K = \frac{k_{\rm b}}{k_{\rm a}}$ (± 0.1)	$\frac{10^5 \cdot (k_{\rm a} + k_{\rm b})}{({\rm sec}^{-1})}$	ra)
20b	60.0°	9.75	1.335 + 0.005	0.9999
20 a	70.0 ^c	8.35	4.65 ± 0.12	0.9963
20 b	70.0°	8.35	$4,685 \pm 0.028$	0.9998
20 b	80,0°	7.85	15.08 ± 0.06	0.9999
20 b	90.0"	7.20	44,03 ± 0.07	1.000

a) Korrelationskoelfizient der Regressionsgeraden.

Die Temperaturabhängigkeit der Gleichgewichtskonstanten ergibt $\Delta H = -2.3 \pm 0.3$ kcal/Mol und $\Delta S = -1.1 + 0.4$ cal/Mol Grad (Korrelationskoeffizient 0.984). Die aus den Geschwindigkeitskonstanten bei 60 bis 90° erhaltenen Aktivierungsparameter der Isomerisierung sind in Tab. 3 zusammengefaßt.

Die Aktivierungsparameter der Diaziridinimin-Valenzisomerisierung erlauben einen Vergleich mit den Daten analoger Umlagerungen, die allerdings nur im Falle der Methylencyclopropane 2⁸⁾ genau bestimmt sind. Die Kinetik nach erster Ordnung

Isomeri- sierung	Ea (kcal/Mol)	log A	ΔH^{\pm} (kcal/Mol)	ΔS^{\pm} (cal Mol ⁻¹ Grad ⁻¹)	r ^{a)}
20b≓20a					
$k_{a} \vdash k_{b}$	28.0 ± 0.2	13.52 ± 0.11	27.3 ± 0.2	1.0 ± 0.5	1.000
ka	30.1 ± 0.4	13.87 🛨 0.26	29.4 ± 0.4	2.6 - 1.2	0.9998
kъ	27.8 0.2	13.31 ± 0.11	27.1 ± 0.2	0.1 ± 0.5	1.000
2a ∠2 2b ⁸⁾	40.4 ± 0.6	14.26	39.4 ± 0.6	4	
5a → 5b			29 b)	- 5b)	
9a →9 b			29.5 ± 2 °		

Tab. 3. Aus den Werten von Tab. 2 errechnete Parameter der Arrhenius- und der Eyring-Gleichung für die Isomerisierung $20b \rightleftharpoons 20a$ und Aktivierungsparameter analoger Valenzisomerisierungen

a) Korrelationskoeffizient der Regressionsgeraden.

^{b)} Aus den Halbwertszeiten des thermischen Zerfalls von 5a bei 140 und $150^{\circ 17}$ berechnet. ^{c)} Unter der Annahme von $\Delta S^{\pm} = 0 \pm 5$ cal Mol⁻¹ Grad⁻¹ aus der Halbwertszeit von 9a bei $100^{\circ 19}$ abgeschätzt.

und die kleinen Aktivierungsentropien sind gut zu vereinbaren mit kurzlebigen, sehr reaktiven Zwischenstufen 21, wenn man nicht eine direkte Isomerisierung (im Sinne einer synchronen Bindungsverschiebung wie in 22 angedeutet) über einen schon aus geometrischen Gründen sehr unwahrscheinlichen Übergangszustand annehmen will. Es fällt auf, daß die Ringöffnungen des α -Lactams **5a**, des Allenepoxids **9a** und der Diaziridinimine 20 praktisch die gleiche Aktivierungsenthalpie erfordern, die um 10 kcal kleiner ist als bei den thermisch viel stabileren Methylencyclopropanen 2 (Tab. 3). Die unterschiedlichen Dissoziationsenergien der Y-Z-Bindung⁴⁴⁾ spielen offenbar für die Höhe der Aktivierungsschwelle der Ringsprengung bei 5a, 9a und

20 keine Rolle. Sehr wahrscheinlich profitiert der Übergangszustand der Ringöffnung bereits stark von einer beträchtlichen Delokalisierungsenergie der Zwischenstufen 21. Die Natur dieser Moleküle (Geometrie, Spinzustand, Reaktivität), die bei weitgehender Planarität als Heteroanaloga des Trimethylenmethans aufzufassen sind, wirft eine Reihe von Fragen auf, die bisher nur⁴⁵⁾ für die durch disrotatorische Ringöffnung von Cyclopropanonen entstehenden Verbindungen einer Lösung nähergebracht wurden^{10,11}). Entsprechende Untersuchungen über die vermutete Zwischenstufe der Diaziridinimin-Valenzisomerisierung, das hypothetische "Trisiminomethan" 23, sollen an anderer Stelle mitgeteilt werden.

Herrn Professor Dr. S. Hünig danken wir herzlich für sein freundliches Interesse und die vielseitige Förderung dieser Arbeit. Unser Dank gilt ferner den Herren Drs. H. G. Kuball und D. Scheutzow für die Bereitstellung von Computerprogrammen.

⁴⁴⁾ J. A. Kerr, Chem. Reviews 66, 465 (1966).

⁴⁵⁾ Weder mit dem Methylenaziridin 8a⁴⁶⁾ noch mit dem Diaziridinon 10b^{23b)} ließen sich z. B. Cycloadditionen wie bei Cyclopropanonen verwirklichen.

⁴⁶⁾ R. C. Cookson, B. Halton, I. D. R. Stevens und C. T. Watts, J. chem. Soc. [London] C, 1967, 928.

Beschreibung der Versuche

Schmelzpunkte wurden mit dem Gerät der Fa. Büchi unter Verwendung eines geeichten Anschütz-Thermometers bestimmt und sind unkorrigiert. UV-Spektren wurden mit dem Cary 14, IR-Spektren mit dem Beckman IR 10 (Eichung mit Polystyrol) und NMR-Spektren mit dem Varian A 60 (ca. 33°, Standard internes TMS, Angaben in δ (ppm)) aufgenommen. NMR-Spektren bei höherer Temperatur wurden mit dem Varian A 60 und dem Varian HA 100 gemessen⁴⁷⁾. Die meisten IR-Spektren von Ölen und niedrigschmelzenden Substanzen wurden in 0.025 mm Schichtdicke und in kapillarer Schicht ohne Verwendung von Lösungsmitteln gemessen. Basenäquivalentgewichte wurden durch Titration mit 0.1 m HClO₄ in Eisessig⁴⁸⁾ bestimmt.

Reagentien

Käuflicher, nachgereinigter Stickstoff wurde über P_2O_5 getrocknet. n-Pentan wurde über NaH aufbewahrt. tert.-Butylalkohol wurde unter N_2 über Calciumhydrid, Dioxan über Natrium, Tetrahydrofuran über LiAlH₄, Chinolin, Benzonitril und α -Brom-naphthalin i. Vak. frisch destilliert. Es wurde analysenreiner Tetrachlorkohlenstoff verwendet. tert.-Butylamin wurde über eine 70-cm-Kolonne mit V2A-Maschendrahtringen fraktioniert, Sdp. 43.6–43.7°.

Methylammoniumperchlorat: Aus 100 g wäßr. 35proz. Methylamin-Lösung (1.1 Mol) durch langsame Zugabe von 155 ccm (1.4 Mol) 60proz. Perchlorsäure unter Eiskühlung. Nach Einengen i. Vak., Ätherzusatz und Umkristallisieren aus Äthanol 99.1 g (69 %) farblose Kristalle⁴⁹.

tert.-Butylammoniumperchlorat: 73.2 g (1.0 Mol) *tert.-Butylamin* in 100 ccm n-Butanol wurden unter Eiskühlung langsam mit 120 ccm 60 proz. *Perchlorsäure* versetzt. Es wurde i. Vak. eingedampft, der Rückstand zweimal in n-Butanol gelöst und erneut eingedampft und mit Äther versetzt: 132 g (76%). Farblose Prismen vom Schmp. 138–139° aus Äthylenchlorid/Acetonitril.

NMR (DMSO-d₆): 1.18 (s, 9H); 7.72 (breites s, 3H).

C₄H₁₂N]ClO₄ (173.6) Ber. Cl 20.42 N 8.07 Gef. Cl 20.46 N 8.07

N-Methyl-N'.N''-di-tert.-butyl-guanidinium-perchlorat (17 · HClO₄): 49.4 g (0.32 Mol) *Di-tert.-butyl-carbodiimid*⁵⁰⁾ und 62.5 g (0.43 Mol) *Methylammoniumperchlorat* wurden in 150 ccm Äthanol 23 Stdn. unter Rückfluß erhitzt. Nach Abkühlen auf 0° wurden 90.1 g (99%) vom Schmp. 167–171° erhalten. Aus Äthanol 83.0 g (91%) farblose Kristalle vom Schmp. 173 bis 174°.

IR (Nujol): 3405, 3370 (NH), 1608 (C=N), 1075/cm (ClO₄).

NMR (DMSO-d₆): 1.37 (s, 18 H), 2.88 (d, J = 4.7 Hz, 3 H), 6.25 (s, 2 H), 6.68 (q, J = 4.7 Hz, 1 H).

C₁₀H₂₄N₃]ClO₄ (285.8) Ber. Cl 12.41 N 14.70 Gef. Cl 12.23 N 14.70

N-Methyl-N'.N''-di-tert.-butyl-guanidin (17): 83.0 g (0.29 MoI) feingepulvertes und scharf getrock netes 17 · HClO₄ wurden vorsichtig in eine Suspension von ca. 16 g (0.67 MoI) *Natrium-hydrid* in 500 ccm Tetrahydrofuran unter magnetischem Rühren und Feuchtigkeitsausschluß eingetragen. Nach Rühren über Nacht wurde i. Vak. eingedampft, in Pentan aufgenommen,

⁴⁷⁾ Wir danken Herrn Dr. H. J. Friedrich, Farbwerke Hoechst, für die Aufnahme dieser Spektren.

⁴⁸⁾ P. C. Markunas und J. A. Riddick, Analytic. Chem. 23, 337 (1951).

⁴⁹⁾ K. A. Hofmann, K. Höbold und F. Quoos, Liebigs Ann. Chem. 386, 304 (1912). Bei einer ähnlichen Darstellung von Methylaminoniumperchlorat fand eine Explosion statt: F. Kasper, Z. Chem. 9, 343 (1969).

⁵⁰⁾ E. Schmidt und M. Seefelder, Liebigs Ann. Chem. 571, 83 (1951).

unter Stickstoff filtriert, die Pentanlösung i. Vak. eingedampft und über eine 20-cm-Vigreuxkolonne destilliert. Ausb. 50.2 g (93%) farbloses Öl vom Sdp.₁₁ $81.3-81.5^{\circ}$.

IR (ohne Lösungsmittel): 3445 (NH), 1650/cm (C=N).

NMR (CCl₄): 1.28 (s, 18 H), 2.71 (s, 3 H), 3.16 (breites s, 2 H).

C₁₀H₂₃N₃ (185.3) Ber. C 64.81 H 12.51 N 22.67

Gef. C 64.92 H 12.26 N 22.55 Äquiv.-Gew. 186.5, 186.8

N.N'.N''-Tri-tert.-butyl-guanidinium-perchlorat (13 · HClO₄): 33.8 g (0.22 Mol) Di-tert.butyl-carbodiimid⁵⁰) und 57.2 g (0.33 Mol) tert.-Butylammoniumperchlorat wurden in 100 ccm Äthanol 24 Stdn. unter Rückfluß erhitzt. Nach Eindampfen i. Vak. wurde mit 100 ccm 2 n NaClO₄ versetzt, abgesaugt, mit 2 n NaClO₄ und Äther gewaschen und i. Vak. getrocknet. Nach Umkristallisieren aus 80 ccm Chloroform unter Zusatz von 40 ccm Äther wurden 46.2 g (64%) vom Schmp. 166–168° (Zers.) erhalten. Aus Chloroform/Äther oder viel Essigester farblose Kristalle vom Schmp. 170–171° (Zers.).

IR (DCCl₃): 3450 (scharf), 3365 (breit) (NH), 1608 (C=N), 1090/cm (ClO₄). NMR (DCCl₃): 1.52 (s, 27 H), 5.13 (breites s, 3 H).

C13H30N3]CIO4 (327.9) Ber. Cl 10.81 N 12.82 Gef. Cl 10.76 N 12.96

N.N'.N''-Tri-tert.-butyl-guanidin (13): Analog 17 aus 13 \cdot HClO₄ mit *Natriumhydrid* in Tetrahydrofuran. Ausb. 86–90% farbloses Öl vom Sdp.₁₁ 95–96°. n_{20}° 1.440.

IR (ohne Lösungsmittel): 3465 (NH), 1645/cm (C = N).

NMR (CCl₄): 1.25 (s, 27 H), 3.10 (breites s, 2 H).

 $C_{13}H_{29}N_3$ (227.4) Ber. C 68.67 H 12.86 N 18.48

Gef. C 68.52 H 12.70 N 18.55 Äquiv.-Gew. 227.0, 226.7

tert.-Butyl-[1.2-di-tert.-butyl-diaziridinyliden-(3)]-amin (14)

a) Unter Stickstoff wurden 22.7 g (0.10 Mol) 13 in ca. 150 ccm n-Pentan bei -30° mit 5.43 g (50 mMol) *tert.-Batylhypochlorit* versetzt und 5 Stdn. unter Lichtausschluß gerührt, wobei die Badtemperatur auf $+12^{\circ}$ kam. Das ausgefallene 13 ·HCl wurde unter Stickstoff abfiltriert und mit n-Pentan gewaschen. Ausb. 11.9 g (90%) farblose Kristalle vom Schmp. >250° (sublimiert).

C13H30N3]Cl (263.9) Ber. Cl 13.44 Gef. Cl 13.49

Die Pentanlösung wurde i. Vak. eingedampft und der Rückstand im Ölpumpenvak. über eine 20-cm-Vigreuxkolonne destilliert: Ausb. 9.2 g (82%) farbloses Öl, laut Sdp., IR- und NMR-Spektrum identisch mit nach b) erhaltenem 14.

b) In eine Lösung von 4.1 g (105 mMol) Kalium in ca. 125 ccm tert.-Butylalkohol wurden unter Stickstoff 11.5 g (35 mMol) feingepulvertes und scharf getrocknetes 13 · HClO₄ eingetragen, 0.5 Stdn. bei Raumtemperatur gerührt, ca. 125 ccm Tetrachlorkohlenstoff zugegeben und in einem Bad von -30° abgekühlt. Danach wurden 7.60 g (70 mMol) tert.-Butylhypochlorit zugesetzt und 4–4.5 Stdn. unter Lichtausschluß gerührt, wobei die Badtemperatur auf -5° kam. Nach Zugabe von 150 ccm Tetrachlorkohlenstoff wurde viermal mit je 150 ccm Eiswasser gewaschen, durch eine kurze Säule mit Kaliumcarbonat filtriert, i.Vak. eingedampft und über eine 20-cm-Vigreuxkolonne fraktioniert. Ausb. 6.07–6.24 g (77–79%) farbloses Öl vom Sdp._{0.005} 29–31°.

IR (CCl₄): 1790/cm (C=N).

UV (n-Hexan): Nur Endabsorption mit schwach ausgeprägter Schulter bei 226 nm (log ε 2.95).

NMR (CCl₄, 10°): 1.09 (s, 9H), 1.17 (s, 9H), 1.25 (s, 9H).

C₁₃H₂₇N₃ (225.4) Ber. C 69.28 H 12.08 N 18.64

Gef. C 69.46 H 11.94 N 18.35 Mol.-Gew. 229 (osmometr. in Benzol)

Methyl-[1.2-di-tert.-butyl-diaziridinyliden-(3)]-amin (20a) und tert.-Butyl-[1-methyl-2-tert.butyl-diaziridinyliden-(3)]-amin (20b): Unter Stickstoff und Eiskühlung wurden 29.40 g (158.6 mMol) 17 in 150 ccm n-Pentan mit 8.69 g (80 mMol) tert.-Butylhypochlorit versetzt. Es wurde 6 Stdn. gerührt, wobei das Bad langsam auf +15° kam. Danach wurde noch 20 Stdn. bei Raumtemperatur gerührt, das ausgefallene 17 ·HCl unter Stickstoff abfiltriert, mit n-Pentan gewaschen und i. Vak. getrocknet: Ausb. 17.36 g (99%) farblose Kristalle, Identifizierung durch Überführen in 17 ·HClO4 mit Lithiumperchlorat in Äthanol (Ausb. 95%).

 $C_{10}H_{24}N_3$]Cl (221.8) Ber. Cl 15.99 Gef. Cl 16.01

Die Pentanlösung wurde zweimal mit je 150 ccm eiskalter Kaliumhydrogencarbonatlösung gewaschen, durch eine kurze Säule mit Kaliumcarbonat filtriert und i. Vak. eingedampft: 14.67 g gelbes Öl, das **20a** und **20b** im Verhältnis 3 : 2 (NMR-Spektrum) enthielt. Destillation bei 10^{-1} Torr ergab 12.04 g (83%) blaßgelbes Öl vom Sdp. <20°, aus dem nach 2 Tagen bei -20° 4.46 g (31%) **20a** vom Schmp. 16–19.5° auskristallisierten. Aus Pentan bei tiefer Temperatur farblose Kristalle vom Schmp. 18–19.5°. Gehalt an **20b** ca. 0.3% (durch Intensitätsvergleich zwischen *N*-Methylsignal von **20b** und ¹³C-Satelliten des Methylsignals von **20a**).

IR s. Abbild. 1, NMR s. Tab. 1 und Abbild. 2.

 $C_{10}H_{21}N_3 \ (183.3) \quad \text{Ber. C} \ 65.53 \ H \ 11.55 \ N \ 22.92 \quad \text{Gef. C} \ 65.61 \ H \ 11.26 \ N \ 22.84$

Das nach Abtrennen des auskristallisierten **20a** erhaltene gelbe Öl (**20a**: **20b** = 3: 7) wurde durch wiederholte Fraktionierung über eine 75-cm-Drehbandkolonne der Fa. Normag, Höfheim/Taunus (0.2 Torr, Badtemperatur $40-50^{\circ}$, Kopftemperatur $14-16^{\circ}$, Kühlertemperatur -30 bis -40°) in 3 etwa gleich große, völlig farblose Fraktionen aufgetrennt, die aus **20b** und 13.0 ± 0.1 , 18.0 ± 0.1 bzw. $42.2 \pm 0.3 \%$ **20a** (NMR-Spektren) bestanden. Die Mittelfraktion wurde für Analyse und Kinetik verwendet. Um Isomerisierung auszuschließen, wurden **20a** und **20b** bei -20° aufbewahrt.

IR s. Abbild. 1, NMR s. Tab. 1, Abbild. 2.

C₁₀H₂₁N₃ (183.3) Ber. C 65.53 H 11.55 N 22.92 Gcf. C 65.91 H 11.29 N 23.02

Kinetik der Valenzisomerisierung 20 b \Rightarrow 20 a

Um Säurespuren auszuschließen, wurden die verwendeten NMR-Röhrchen sorgfältig mit einem alkalischen Reinigungsmittel (RBS der Fa. Roth, Karlsruhe), destilliertem Wasser und analysenreinem Methanol gespült, bei 110° getrocknet und unter Stickstoff abgekühlt. Nach Einfüllen der reinen Substanzen und einiger Tropfen TMS wurde bei 10⁻³ Torr wiederholt entgast und schließlich abgeschmolzen. Die aus 10–15 Integrationen über die Methylsignale bei 2.75 und 3.03 ppm erhaltenen Mittelwerte des Molenbruchs waren auf \pm 0.001 reproduzierbar. Nach 10–14 Halbwertszeiten war von beiden Seiten her der Gleichgewichtszustand erreicht, was durch Identität der IR- und NMR-Spektren bewiesen wurde. Aus den erhaltenen 11 bis 13 Meßpunkten wurde die Regressionsgerade (Gl. 5)⁵¹ berechnet ($m_t =$ Molenbruch des entstehenden Isomeren zur Zeit $t, m_{\infty} =$ Molenbruch nach Erreichen des Endzustands, $k_a, k_b =$ Geschwindigkeitskonstanten). Die Parameter der Eyring-Gleichung wurden für 75° errechnet, wobei der Transmissionskoeffizient = 1 gesetzt wurde. Sämtliche Regressionsgeraden wurden mit einer Streustatistik auf einer Electrologica EL-x8 bestimmt. Die angegebenen Fehler sind Standardabweichungen.

$$\log \frac{m_{\infty}}{m_{\infty} - m_{\rm t}} = \frac{k_{\rm a} + k_{\rm b}}{2.303} \cdot t + \text{const.} \tag{Gl. 5}$$

51) K. J. Laidler, Chemical Kinetics, McGraw-Hill, New York 1965. [430/69]